COEFFICIENT ESTIMATES FOR RUSCHEWEYH DERIVATIVES

MASLINA DARUS and AJAB AKBARALLY

Received 5 September 2003

We consider functions f, analytic in the unit disc and of the normalized form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. For functions $f \in \bar{R}_\delta(\beta)$, the class of functions involving the Ruscheweyh derivatives operator, we give sharp upper bounds for the Fekete-Szegö functional $|a_3 - \mu a_2^2|$.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let S denote the class of normalized analytic univalent functions f defined by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

in the unit disc $D = \{ z : |z| < 1 \}$. Suppose that

$$S^* = \left\{ f \in S : \text{Re} \left(\frac{zf'(z)}{f(z)} \right) > 0, \, z \in D \right\},$$

$$S^*(\beta) = \left\{ f \in S : \left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\beta \pi}{2}, \, z \in D \right\} \quad (1.2)$$

are classes of starlike and strongly starlike functions of order $\beta \ (0 < \beta \leq 1)$, respectively. Note that $S^*(\beta) \subset S^*$ for $0 < \beta < 1$ and $S^*(1) = S^*$ [5]. Kanas [2] introduced the subclass $\bar{R}_\delta(\beta)$ of function $f \in S$ as the following.

Definition 1.1. For $\delta \geq 0$, $\beta \in (0,1]$, a function f normalized by (1.1) belongs to $\bar{R}_\delta(\beta)$ if, for $z \in D \setminus \{0\}$ and $D^\delta f(z) \neq 0$, the following holds:

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| \leq \frac{\beta \pi}{2}, \quad (1.3)$$

where $D^\delta f$ denotes the generalized Ruscheweyh derivative which was originally defined as the following.

Definition 1.2 [6]. Let $D^n f$ and f be defined by (1.1). Then for $n \in \mathbb{N} \cup \{0\}$,

$$D^n f(z) = \frac{z}{(1-z)^{n+1}} \ast f(z), \quad (1.4)$$

where \ast denotes the Hadamard product of two analytic functions and \mathbb{N} is a set of natural numbers.
Later in [1], Al-Amiri generalized the Ruscheweyh derivative \(D^\delta \) for real numbers \(\delta \geq -1 \) as a Hadamard product of the functions \(f \) and \(z/(1-z)^{\delta+1} \).

Note that \(\bar{R}_0(\beta) = S^*(\beta) \) for each \(\beta \in (0,1] \) and \(\bar{R}_0(1) = S^* \). In this note, we obtain sharp estimates for \(|a_2|, |a_3| \) and the Fekete-Szegö functional for the class \(\bar{R}_\delta(\beta) \). For the subclass \(S^* \), sharp upper bounds for the functional \(|a_3 - \mu a_2^2| \) have been obtained for all real \(\mu \) [3, 4].

2. Preliminary results. In proving our results, we will need the following lemmas. However, we first denote \(P \) to be the class of analytic functions with positive real part in \(D \).

Lemma 2.1. Let \(p \in P \) and let it be of the form \(p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \) with \(\text{Rep}(z) > 0 \). Then

(i) \(|c_n| \leq 2 \) for \(n \geq 1 \),
(ii) \(|c_2 - c_1^2/2| \leq 2 - |c_1|^2/2 \).

Lemma 2.2. Let \(\delta \geq 0 \) and \(\beta \in (0,1] \). If \(f \in \bar{R}_\delta(\beta) \) and is given by (1.1), then

\[
|a_2| \leq \frac{2\beta}{\delta+1},
|a_3| \leq \begin{cases}
\frac{2\beta}{(\delta+2)(\delta+1)} & \text{if } \beta \leq \frac{1}{3}, \\
\frac{6\beta^2}{(\delta+2)(\delta+1)} & \text{if } \beta \geq \frac{1}{3}.
\end{cases}
\]

Proof. Let \(F(z) = D^\delta f(z) = z + A_2 z^2 + A_3 z^3 + \cdots \). Since \(f \in \bar{R}_\delta(\beta) \) and \(D^\delta f(z) \in S^*(\beta) \), then

\[
\frac{z F'(z)}{F(z)} = p^\beta(z)
\]

and so

\[
\frac{z(1 + 2A_2 z + 3A_3 z^2 + \cdots)}{z + A_2 z^2 + A_3 z^3 + \cdots} = (1 + c_1 z + c_2 z^2 + \cdots)^\beta,
\]

which implies that

\[
z + 2A_2 z^2 + 3A_3 z^3 + \cdots = z + (\beta c_1 + A_2) z^2 + \left(\beta c_2 + \frac{\beta(\beta-1)}{2} c_1^2 + \beta A_2 c_1 + A_3 \right) z^3 + \cdots.
\]

Equating the coefficients, we have

\[
A_2 = \beta c_1, \quad (2.5)
\]
\[
A_3 = \frac{\beta}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{3}{4} \beta^2 c_1^2.
\]

(2.6)
Now, for $\delta \geq -1$, $D^\delta f$ has the Taylor expansion

$$D^\delta f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\delta)}{(n-1)!\Gamma(1+\delta)} a_n z^n, \quad z \in D,$$

(2.7)

where $\Gamma(n+\delta)$ denotes Euler’s functions with

$$\Gamma(n+\delta) = \delta(\delta+1) \cdots (\delta+n-1) \Gamma(\delta).$$

(2.8)

Then

$$z + A_2 z^2 + A_3 z^3 + \cdots = z + \frac{\Gamma(2+\delta)}{\Gamma(1+\delta)} a_2 z^2 + \frac{\Gamma(3+\delta)}{2\Gamma(1+\delta)} a_3 z^3 + \cdots.$$

(2.9)

Equating the coefficients in (2.9), we have

$$a_2 \frac{\Gamma(2+\delta)}{\Gamma(1+\delta)} = a_2 (\delta+1) = A_2.$$

(2.10)

Then, from (2.5), we obtain

$$a_2 = \frac{\beta c_1}{\delta+1}.$$

(2.11)

It follows that from Lemma 2.1(i)

$$|a_2| \leq \frac{2\beta}{\delta+1},$$

(2.12)

whereas the coefficient of z^3 in (2.9) is

$$a_3 \frac{\Gamma(3+\delta)}{2\Gamma(1+\delta)} = a_3 \frac{(\delta+1)(\delta+2)}{2} = A_3.$$

(2.13)

From (2.6), we obtain

$$a_3 = \frac{2}{(\delta+1)(\delta+2)} \left[\frac{\beta}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{3}{4} \beta^2 c_1^2 \right].$$

(2.14)

It follows from Lemma 2.1(ii) that

$$|a_3| \leq \frac{2}{(\delta+1)(\delta+2)} \left[\frac{\beta}{2} \left(2 - \frac{|c_1|^2}{2} \right) + \frac{3}{4} \beta^2 |c_1|^2 \right],$$

(2.15)

that is,

$$|a_3| \leq \begin{cases} \frac{2\beta}{(\delta+1)(\delta+2)} & \text{if } \beta \leq \frac{1}{3}, \\ \frac{6\beta^2}{(\delta+2)(\delta+1)} & \text{if } \beta \geq \frac{1}{3}. \end{cases}$$

(2.16)
3. Results. We first consider the functional $|a_3 - \mu a_2^2|$ for complex μ.

Theorem 3.1. Let $f \in \bar{R}_\delta(\beta)$ and $\beta \in (0, 1]$. Then for μ complex,

$$|a_3 - \mu a_2^2| \leq \frac{2\beta}{(\delta + 1)(\delta + 2)} \max \left[1, \frac{\beta(3(\delta + 1) - 2\mu(\delta + 2))}{(\delta + 1)} \right].$$ \hspace{1cm} (3.1)

For each μ there is a function in $\bar{R}_\delta(\beta)$ such that equality holds.

Proof. From (2.11) and (2.14), we write

$$a_3 - \mu a_2^2 = \frac{2}{(\delta + 1)(\delta + 2)} \left[\frac{\beta}{2} (c_2 - \frac{c_1^2}{2}) + \frac{3}{4} \beta^2 c_1^2 \right] - \mu \left(\frac{\beta c_1}{\delta + 1} \right)^2,$$

$$= \frac{1}{(\delta + 1)(\delta + 2)} \left[\beta \left(c_2 - \frac{c_1^2}{2} \right) + \beta^2 \left(\frac{3(\delta + 1) - 2\mu(\delta + 2)}{2(\delta + 1)^2(\delta + 2)} c_1^2 \right) \right].$$ \hspace{1cm} (3.2)

It follows from (3.2) and Lemma 2.1(ii) that

$$|a_3 - \mu a_2^2| \leq \frac{\beta}{(\delta + 1)(\delta + 2)} \left(2 - \frac{|c_1|^2}{2} \right) + \frac{\beta^2 (3(\delta + 1) - 2\mu(\delta + 2))}{2(\delta + 1)^2(\delta + 2)} |c_1|^2,$$

$$= \frac{2\beta}{(\delta + 1)(\delta + 2)} + \frac{\beta^2 (3(\delta + 1) - 2\mu(\delta + 2)) - \beta(\delta + 1)}{2(\delta + 1)^2(\delta + 2)} |c_1|^2,$$ \hspace{1cm} (3.3)

which on using Lemma 2.1(i), that is, $|c_1| \leq 2$, gives

$$|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{2\beta}{(\delta + 1)(\delta + 2)} & \text{if } \kappa(\delta) \leq \beta(\delta + 1), \\
\frac{\beta^2 (6(\delta + 1) - 4\mu(\delta + 2))}{(\delta + 1)^2(\delta + 2)} & \text{if } \kappa(\delta) \geq \beta(\delta + 1),
\end{cases}$$ \hspace{1cm} (3.4)

where $\kappa(\delta) = |\beta^2 (3(\delta + 1) - 2\mu(\delta + 2))|$. Equality is attained for functions in $\bar{R}_\delta(\beta)$ given by

$$\frac{z(D^\delta f(z))'}{D^\delta f(z)} = \left(\frac{1 + z^2}{1 - z^2} \right)^\beta, \quad \frac{z(D^\delta f(z))'}{D^\delta f(z)} = \left(\frac{1 + z}{1 - z} \right)^\beta,$$ \hspace{1cm} (3.5)

respectively.

We next consider the cases where μ is real and prove the following.
Theorem 3.2. Let \(f \in R_\delta(\beta) \) and \(\beta \in (0, 1] \). Then for \(\mu \) real,

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{\beta^2(6(\delta + 1) - 4\mu(\delta + 2))}{(\delta + 1)^2(\delta + 2)} & \text{if } \mu \leq \frac{(6\beta - 2)(\delta + 1)}{4\beta(\delta + 2)}, \\
\frac{2\beta}{(\delta + 1)(\delta + 2)} & \text{if } \frac{(6\beta - 2)(\delta + 1)}{4\beta(\delta + 2)} \leq \mu \leq \frac{2 + 6\beta)(\delta + 1)}{4\beta(\delta + 2)}, \\
\frac{\beta^2(4\mu(\delta + 2) - 6(\delta + 1))}{(\delta + 1)^2(\delta + 2)} & \text{if } \mu \geq \frac{(2 + 6\beta)(\delta + 1)}{4\beta(\delta + 2)}.
\end{cases}
\] (3.6)

For each \(\mu \), there is a function in \(R_\delta(\beta) \) such that equality holds.

Proof. Here we consider two cases.

Case (i): \(\mu \leq 3(\delta + 1)/2(\delta + 2) \).

In this case, (3.2) and Lemma 2.1(ii) give

\[
|a_3 - \mu a_2^2| \leq \frac{\beta}{(\delta + 1)(\delta + 2)} \left(2 - \frac{|c_1|^2}{2} \right) + \frac{\beta^2(6(\delta + 1) - 4\mu(\delta + 2))}{4(\delta + 1)^2(\delta + 2)} |c_1|^2,
\]

and so, using the fact that \(|c_1| \leq 2 \), we obtain

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{\beta^2(6(\delta + 1) - 4\mu(\delta + 2))}{(\delta + 1)^2(\delta + 2)} & \text{if } \mu \leq \frac{(6\beta - 2)(\delta + 1)}{4\beta(\delta + 2)}, \\
\frac{2\beta}{(\delta + 1)(\delta + 2)} & \text{if } \frac{(6\beta - 2)(\delta + 1)}{4\beta(\delta + 2)} \leq \mu \leq \frac{3(\delta + 1)}{2(\delta + 2)}.
\end{cases}
\] (3.8)

Equality is attained on choosing \(c_1 = c_2 = 2 \) and \(c_1 = 0, c_2 = 2 \), respectively, in (3.2).

Case (ii): \(\mu \geq 3(\delta + 1)/2(\delta + 2) \).

It follows from (3.2) and Lemma 2.1(ii) that

\[
|a_3 - \mu a_2^2| \leq \frac{\beta}{(\delta + 1)(\delta + 2)} \left(2 - \frac{|c_1|^2}{2} \right) + \frac{\beta^2(4\mu(\delta + 2) - 6(\delta + 1))}{4(\delta + 1)^2(\delta + 2)} |c_1|^2,
\]

and so, using the fact that \(|c_1| \leq 2 \), we obtain

\[
|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{2\beta}{(\delta + 1)(\delta + 2)} & \text{if } \frac{3(\delta + 1)}{2(\delta + 2)} \leq \mu \leq \frac{(6\beta + 2)(\delta + 1)}{4\beta(\delta + 2)}, \\
\frac{\beta^2(4\mu(\delta + 2) - 6(\delta + 1))}{(\delta + 1)^2(\delta + 2)} & \text{if } \mu \leq \frac{(6\beta + 2)(\delta + 1)}{4\beta(\delta + 2)}.
\end{cases}
\] (3.10)

Equality is attained on choosing \(c_1 = 0, c_2 = 2 \) and \(c_1 = 2i, c_2 = -2 \), respectively, in (3.2). Thus the proof is complete. □
Theorem 3.3. Let \(f \in \mathcal{R}_\delta(\beta) \) and let it be given by (1.1). Then

\[
|a_3| - |a_2| \leq \frac{2\beta}{(\delta + 1)(\delta + 2)} \quad \text{if } \beta \leq \frac{3(\delta + 1)}{5\delta + 1}.
\]

Proof. Write

\[
|a_3| - |a_2| \leq |a_3 - \frac{2}{3} a_2^2| + \frac{2}{3} |a_2|^2 - |a_2|.
\]

Then since \((6\beta - 2)(\delta + 1)/4\beta(\delta + 2) \leq 2/3 \) for \(\beta \leq 3(\delta + 1)/(5\delta + 1) \), it follows from Theorem 3.2 that

\[
|a_3| - |a_2| \leq \frac{2\beta}{(\delta + 1)(\delta + 2)} + \frac{2}{3} |a_2|^2 - |a_2| = \lambda(x),
\]

where \(x = |a_2| \in [0, 2\beta/(\delta + 1)] \). Since \(\lambda(x) \) attains its maximum value at \(x = 0 \), the theorem follows. This is sharp.

Acknowledgments. The work presented here was supported by IRPA Grant 09-02-02-0080-EA208. The author would like to thank all the referees for their suggestions regarding the contents of the note.

References

Maslina Darus: School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
E-mail address: maslina@pkrisc.cc.ukm.my

Ajab Akbarally: School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru