SOBOLEV SPACE ESTIMATES FOR SOLUTIONS OF THE EQUATION $\overline{\partial} u = f$ ON POLYCYLINDERS

PATRICK W. DARKO and CLEMENT H. LUTTERODT

Received 10 August 2003

In trying to improve Weinstock’s results on approximation by holomorphic functions on certain product domains, we are led to estimates in Sobolev spaces for the $\overline{\partial}$-operator on polycylinders for (y, q)-forms. This generalizes our results for the same operator on polycylinders previously obtained, and can be applied to a number of other problems such as the Corona problem.

2000 Mathematics Subject Classification: 32A99.

1. Introduction. Had we the uniform estimates of Grauert and Lieb for the Cauchy-Riemann equation [5] on polycylinders, we would have improved Weinstock’s result [6, Theorem 1.1] on polycylinders a long time ago. On the other hand, we have had several estimates for the $\overline{\partial}$-operator in Sobolev spaces [2, 3, 4] on polycylinders, which we have been trying to improve. At the same time, we noticed that because some Sobolev norms dominate the uniform norm, if we did the approximation in those Sobolev norms, we would get the desired improvement of the above-mentioned theorem of Weinstock on polycylinders. We therefore went ahead here and jazzed up our previous estimates to get new estimates. We also applied our results to solve the Sobolev-Corona problem.

2. Delta-bar in $W^{k,p}_{(y,q+1)}(\Omega)$. Let $L^p_{(y,q)}(U)$ denote the space of forms of type (y, q) with coefficients in $L^p(U)$. Then,

$$ f = \sum_{|J|=y} \sum_{|I|=q} f_{I,J} dz^I \wedge d\bar{z}^J, \quad (2.1) $$

where \sum' means that the summation is performed only over strictly increasing multi-indices, $I = (i_1, \ldots, i_y)$, $J = (j_1, \ldots, j_q)$, $dz^I = dz_{i_1} \wedge \cdots \wedge dz_{i_y}$, $d\bar{z}^J = d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q}$, U is open in \mathbb{C}^n, and $1 \leq p \leq \infty$.

The norm of the (y, q)-form in (2.1) is defined by

$$ \| f \|_{L^p_{(y,q)}(U)} = \left\{ \sum_{|I|=y} \sum_{|J|=q} \| f_{I,J} \|_{L^p(U)} \right\}^{1/p}, \quad \text{for } 1 \leq p < \infty, \quad (2.2) $$

$$ \| f \|_{L^\infty_{(y,q)}(U)} = \max_{I,J} \| f_{I,J} \|_{L^\infty(U)}. $$
Let $W^{k,p}(U)$, $1 \leq p \leq \infty$, $k = 1, 2, \ldots$, be the space of functions which together with their distributional derivatives of order through k are in $L^p(U)$, with the usual norm, and $W^{k,p}_{(\gamma,q)}(U)$ the space of (γ,q)-forms with coefficients in $W^{k,p}(U)$, with the norm defined by

$$\|f\|_{W^{k,p}_{(\gamma,q)}(U)} = \left\{ \sum I \sum J \left\| f_{I,J} \right\|_{W^{k,p}(U)} \right\}^{1/p}, \quad 1 \leq p < \infty,$$ \(2.3\)

$$\|f\|_{W^{k,p}(U)} = \max_{I,J} \| f_{I,J} \|_{W^{k,p}(U)}.$$ \(2.4\)

A bounded open set Ω in \mathbb{C}^n is called a polycylinder if Ω can be expressed as a product of n bounded open sets in \mathbb{C}, that is, $\Omega = U_1 \times U_2 \times \cdots \times U_n$, where each U_j is open and bounded in \mathbb{C}. And Ω is called admissible if each U_j has boundary with plane measure zero.

Our main result is the following theorem.

Theorem 2.1. Let Ω be an admissible polycylinder in \mathbb{C}^n and let $f \in W^{k,p}_{(\gamma,q)}(\Omega)$ be $\overline{\partial}$-closed, $1 \leq p \leq \infty$, $k = 1, 2, \ldots$, then there is a $u \in W^{k,p}_{(\gamma,q)}(\Omega)$ such that $\overline{\partial} u = f$ and

$$\|u\|_{W^{k,p}_{(\gamma,q)}(\Omega)} \leq \delta \|f\|_{W^{k,p}_{(\gamma,q+1)}(\Omega)},$$ \(2.4\)

where δ depends on Ω.

3. The Corona problem. The Corona problem is stated in [1]. Let X be a relatively compact domain in a topological space Y. Let f_0, \ldots, f_N be complex-valued continuous functions on X; f_0, \ldots, f_N verify the Corona assumption if there is $\delta > 0$ such that

$$\sum_{S} |f_S| \geq \delta > 0 \quad \text{on} \ X.$$ \(3.1\)

Let A be a function algebra on X. The Corona problem is solvable in A (on X) when each set $f_0, \ldots, f_N \in A$, which verifies the Corona assumption, represents 1 in A, that is, there are g_0, \ldots, g_N in A such that

$$f_0 g_0 + \cdots + f_N g_N = 1 \quad \text{on} \ X.$$ \(3.2\)

From Theorem 2.1 through cohomology with bounds (see [4, Theorem 2.3]), we have the following theorem.

Theorem 3.1. Let Ω be an admissible polycylinder and suppose that Ω has a Lipschitz boundary, and $pk > n$ (in which case $\Gamma(\Omega, \mathcal{O}) \cap W^{k,p}(\Omega)$ is an algebra with members extending continuously to the boundary of Ω). Then the Corona problem is solvable in $\Gamma(\Omega, \mathcal{O}) \cap W^{k,p}(\Omega)$ (here \mathcal{O} is the structure sheaf of \mathbb{C}^n, and $\Gamma(\Omega, \mathcal{O})$ is the set of sections of \mathcal{O} over Ω).
4. Approximation. Let $K = \overline{\Omega}$ be the closure in \mathbb{C}^n of an admissible polycylinder, let $C(K)$ denote the Banach space of continuous complex-valued functions on K with the uniform norm, and let $H(K)$ denote the closure in $C(K)$ of the space of functions which are holomorphic in some neighborhood of K.

Our last result is then the following theorem.

Theorem 4.1. If U is a neighborhood of K, $f \in C^2(U)$, and $\partial f / \partial \xi_j = 0$ on K, $1 \leq j \leq n$, then $f \in H(K)$.

In this paper, we prove the $(0, 1)$ version of Theorems 2.1 and 4.1 only. Theorem 3.1 follows when considered as the weak Corona theorem as in [1]. The general version of Theorem 2.1 can be proved using the induction process in [3].

5. Solution of $\overline{\partial} u = f((y, q) = (0, 1))$. For all f satisfying the hypothesis of Theorem 2.1 in this case, extend f to all of \mathbb{C}^n by zero outside Ω and call it again f. Then $\overline{\partial} f = 0$ in the distribution sense in \mathbb{C}^n. Then the following is true.

Lemma 5.1. If $u(z) = (2\pi i)^{-1} \int_{\mathbb{C}} (\xi - z_1)^{-1} f_1(\xi, z_2, \ldots, z_n) d\xi \wedge d\overline{\xi}$, where $f = \sum_{j=1}^n f_j d\xi_j$, with $f_1 \neq 0$, then $\overline{\partial} u = f$ and

$$\|u\|_{W^{k,p}(\Omega)} \leq \delta \|f\|_{W^{k,p}_{(0,1)}(\Omega)}, \quad 1 \leq p \leq \infty, \quad k = 1, 2, \ldots,$$

where δ depends only on Ω.

Proof. We regularize f coefficientwise:

$$f_m = \sum_{j=1}^n (f_j)_m d\xi_j,$$

$$\begin{aligned}
(f_j)_m(z) &= \int f_j(z - \xi) \phi(\xi) d\lambda(\xi) = m^2 \int f_j(\xi) \phi(m(z - \xi)) d\lambda(\xi),
\end{aligned}$$

where $\phi \in C^\infty_0(\mathbb{C}^n)$, $\int \phi d\lambda = 1$, $\phi \geq 0$, $\text{supp} \phi = \{ z : |z| \leq 1 \}$, and λ is a Lebesgue measure. Then $\|f_m\|_{L^p_{(0,1)}(\Omega)} \leq \|f\|_{L^p_{(0,1)}}$ for $1 \leq p \leq \infty$, $f_m \to f$ in $L^1_{(0,1)}(\Omega)$ (5.3)

as $m \to \infty$ for $1 \leq p \leq \infty$, and f_m is $\overline{\partial}$-closed in \mathbb{C}^n.

Now, let

$$u_m(z) = (2\pi i)^{-1} \int_{\mathbb{C}} (\xi - z_1)^{-1} (f_1)_m(\xi, z_2, \ldots, z_n) d\xi \wedge d\overline{\xi}.$$ (5.4)

Then

$$u_m(z) = -(2\pi i)^{-1} \int_{\mathbb{C}^n} \xi^{-1} (f_1)(z_1 - \xi, z_2, \ldots, z_n) d\xi \wedge \overline{\xi},$$ (5.5)
and from (5.4) and (5.5),
\[
\frac{\partial u_m(z)}{\partial z_l} = (2\pi i)^{-1} \int_C \frac{1}{(\xi - z_1)^{-1}} \frac{\partial (f_1)_m(\xi, z_2, \ldots, z_n)}{\partial \xi} d\xi \wedge d\xi = (f_1)_m(z).
\] (5.6)

Therefore, \(\overline{\partial u_m} = f_m \), and since \(f_m \to f \) in \(L^{1}(\Omega) \) for \(1 \leq p \leq \infty \), \(u_m \to u \) in \(L^{1}(\Omega) \) if \(1 \leq p \leq \infty \), and we have \(\overline{\partial u} = f \).

For \(1 \leq p \leq \infty \), it is clear from [2] that
\[
\|u\|_{L^p(\Omega)} \leq \delta \|f\|_{L^p(0,1)(\Omega)},
\] (5.7)
with \(\delta \) depending on \(\Omega \).

Now, let \(\gamma(\alpha) = \gamma(\alpha_1) \gamma(\alpha_2) \cdots \gamma(\alpha_n) \), \(z = (x_1 + iy_1, \ldots, x_n + iy_n) \), then [2, 3] we see, where \(\gamma(\alpha) \) is a power of \(-1\), that
\[
\gamma(\alpha) \frac{\partial^\alpha u_m(z)}{\partial \alpha} = (2\pi i)^{-1} \int_C \frac{1}{(\xi - z_1)^{-1}} \frac{\partial^\alpha (f_1)_m(\xi, z_2, \ldots, z_n)}{\partial \xi} d\xi \wedge d\xi.
\] (5.8)

Since it is clear that for \(1 \leq p \leq \infty \), when \(k \geq |\alpha| \) and \(f \in W^{k,p}(\Omega) \), \(\partial^\alpha (f_1)_m \to \partial^\alpha f \) in \(L^1(\Omega) \) when \(m \to \infty \), it follows that, for \(k = 1, 2, \ldots \),
\[
\gamma(\alpha) \frac{\partial^\alpha u(z)}{\partial \alpha} = (2\pi i)^{-1} \int_{U_1} (\xi - z_1)^{-1} \frac{\partial^\alpha f_1(\xi, z_2, \ldots, z_n)}{\partial \xi} d\xi \wedge d\xi.
\] (5.9)

Therefore, for \(k = 1, 2, \ldots, 1 \leq p \leq \infty \),
\[
\|u\|_{W^{k,p}(\Omega)} \leq \delta \|f\|_{W^{k,p}(0,1)}.
\] (5.10)

If \(f_1 \equiv 0 \) and \(f \neq 0 \), there is an \(f_{j0} \) which we can use in place of \(f_1 \).

6. Proof of Theorem 4.1. Let \(f \) satisfy the hypothesis of Theorem 4.1. We may suppose that \(f \) has compact support in \(U \). Regularize \(f \) as we did in Section 5:
\[
f_m = \int f\left(z - \frac{\xi}{m}\right) \phi(\xi) d\lambda(\xi) = m^{2n} \int f(\xi) \phi(m(z - \xi)) d\lambda(\xi).
\] (6.1)

Then, \(f_m \in C^\infty(\mathbb{C}^n) \), \(f_m \to f \) in \(W^{1,\infty}(\mathbb{C}^n) \) as \(m \to \infty \), and for each \(j \),
\[
\frac{\partial f_m}{\partial z_j}(z) = \int \frac{\partial f}{\partial z_j}\left(z - \frac{\xi}{m}\right) \phi(\xi) d\lambda(\xi),
\] (6.2)
so if \(G \) is open in \(\mathbb{C}^n \),
\[
\left\|f_m\right\|_{W^{1,\infty}(G)} \leq \|f\|_{W^{1,\infty}(G)}, \quad \left\|\frac{\partial f_m}{\partial z_j}\right\|_{W^{1,\infty}(G)} \leq \left\|\frac{\partial f}{\partial z_j}\right\|_{W^{1,\infty}(G)},
\] (6.3)
where \(G^\nu = \{z - \nu \xi : z \in G, |\xi| \leq 1\} \).
Now, we can find a sequence \(\{ \Omega_\lambda \} \) of decreasing admissible polycylinders such that \(K = \overline{\bigcap \Omega_\lambda} \) and such that \(\delta \) in Theorem 2.1 is the same for each \(\Omega_\lambda \). Note also that

\[
\| \partial f \|_{W^{1,\infty}(\Omega_\lambda)} \longrightarrow 0 \quad \text{as} \quad \lambda \longrightarrow \infty.
\] (6.4)

Let \(\epsilon > 0 \) be given. Choose \(m_0 \) such that

\[
\| f - f_m \|_{W^{1,\infty}(K)} < \frac{\epsilon}{2} \quad \text{for} \quad m > m_0.
\] (6.5)

Choose \(\lambda_0 \) such that

\[
\| \partial f \|_{W^{1,\infty}(\Omega_{\lambda_0}, (0,1))} < \delta - \frac{\epsilon}{2}.
\] (6.6)

Then, for small \(\nu \),

\[
\| \partial f \|_{W^{1,\infty}(\Omega_{\nu \lambda_0}, (0,1))} < \frac{\delta - \epsilon}{2}.
\] (6.7)

By Theorem 2.1, we can choose \(u \in W^{1,\infty}(\Omega_{\lambda_0}) \) such that \(\partial u = \partial f_m, m > m_0 \) (fixed), and

\[
\| u \|_{W^{1,\infty}(\Omega_{\lambda_0})} \leq \delta \| \partial f_m \|_{W^{1,\infty}(\Omega_{\lambda_0})} \leq \delta \| \partial f \|_{W^{1,\infty}(\Omega_{\nu \lambda_0}, (0,1))} \quad \text{(by (6.3))}
\]

\[
< \frac{\epsilon}{2} \quad \text{(by (6.7)).}
\] (6.8)

Then \(h = f_m - u \) is holomorphic in a neighborhood of \(K \) and with \(\| \cdot \|_K \) the uniform norm, we have

\[
\| f - h \|_K \leq \| f - f_m \|_K + \| f_m - h \|_K
\]

\[
\leq \| f - f_m \|_{W^{1,\infty}(K)} + \| u \|_{W^{1,\infty}(K)}
\]

\[
< \frac{\epsilon}{2} + \| u \|_{W^{1,\infty}(\Omega_{\lambda_0})}
\]

\[
< \epsilon.
\] (6.9)

REFERENCES

Patrick W. Darko: Department of Mathematics and Computer Science, Lincoln University, PA 19352, USA
E-mail address: pdarko@jewel.morgan.edu

Clement H. Lutterodt: Department of Mathematics, Howard University, Washington, DC 20059, USA
E-mail address: clutterodt@fac.howard.edu
Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com